Aguirre, E., Andreo, V., Porcasi, X., Lopez, L., Guzman, C., González, P., and Scavuzzo, C. M. (2021),
“Implementation of a proactive system to monitor Aedes aegypti populations using open access historical and forecasted meteorological data,” Ecological Informatics, 64, 101351.
https://doi.org/10.1016/j.ecoinf.2021.101351.
Andreo, V., Glass, G., Shields, T., Provensal, C., and Polop, J. (2011), “Modeling Potential Distribution of Oligoryzomys longicaudatus, the Andes Virus (Genus: Hantavirus) Reservoir, in Argentina,” EcoHealth, 8, 332–348.
Andreo, V., Izquierdo-Verdiguier, E., Zurita-Milla, R., Rosa, R., Rizzoli, A., and Papa, A. (2018),
“Identifying Favorable Spatio-Temporal Conditions for West Nile Virus Outbreaks by Co-Clustering of Modis LST Indices Time Series,” in
IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia: IEEE, pp. 4670–4673.
https://doi.org/10.1109/IGARSS.2018.8519542.
Andreo, V., Neteler, M., Rocchini, D., Provensal, C., Levis, S., Porcasi, X., Rizzoli, A., Lanfri, M., Scavuzzo, M., Pini, N., Enria, D., and Polop, J. (2014),
“Estimating Hantavirus Risk in Southern Argentina: A GIS-Based Approach Combining Human Cases and Host Distribution,” Viruses, 6, 201–222.
https://doi.org/10.3390/v6010201.
Andreo, V., Porcasi, X., Guzman, C., Lopez, L., and Scavuzzo, C. M. (2021),
“Spatial Distribution of Aedes aegypti Oviposition Temporal Patterns and Their Relationship with Environment and Dengue Incidence,” Insects, 12, 919.
https://doi.org/10.3390/insects12100919.
Andreo, V., Rosa, J., Ramos, K., and Salomón, O. D. (2022),
“Ecological characterization of a cutaneous leishmaniasis outbreak through remotely sensed land cover changes,” Geospatial Health, 17.
https://doi.org/10.4081/gh.2022.1033.
Carrasco-Escobar, G., Moreno, M., Fornace, K., Herrera-Varela, M., Manrique, E., and Conn, J. E. (2022),
“The use of drones for mosquito surveillance and control,” Parasites & Vectors, 15, 473.
https://doi.org/10.1186/s13071-022-05580-5.
Georganos, S., Grippa, T., Lennert, M., Vanhuysse, S., and Johnson, B. A. (2018), “Scale Matters: Spatially Partitioned Unsupervised Segmentation Parameter Optimization for Large and Heterogeneous Satellite Images,” 23.
Grippa, T., Lennert, M., Beaumont, B., Vanhuysse, S., Stephenne, N., Wolff, E., Grippa, T., Lennert, M., Beaumont, B., Vanhuysse, S., Stephenne, N., and Wolff, E. (2017),
“An Open-Source Semi-Automated Processing Chain for Urban Object-Based Classification,” Remote Sensing, 9, 358.
https://doi.org/10.3390/rs9040358.
Kasampalis, D. A., Alexandridis, T. K., Deva, C., Challinor, A., Moshou, D., and Zalidis, G. (2018),
“Contribution of remote sensing on crop models: A review,” Journal of Imaging, 4, 52.
https://doi.org/10.3390/jimaging4040052.
Lambin, E. F., Tran, A., Vanwambeke, S. O., Linard, C., and Soti, V. (2010),
“Pathogenic landscapes: Interactions between land, people, disease vectors, and their animal hosts,” International Journal of Health Geographics, 9, 54.
https://doi.org/10.1186/1476-072X-9-54.
Lechner, A. M., Foody, G. M., and Boyd, D. S. (2020),
“Applications in Remote Sensing to Forest Ecology and Management,” One Earth, 2, 405–412.
https://doi.org/10.1016/j.oneear.2020.05.001.
Leitão, P. J., and Santos, M. J. (2019),
“Improving models of species ecological niches: A remote sensing overview,” Frontiers in Ecology and Evolution, 7.
https://doi.org/10.3389/fevo.2019.00009.
Meng, R., Gao, R., Zhao, F., Huang, C., Sun, R., Lv, Z., and Huang, Z. (2022),
“Landsat-based monitoring of southern pine beetle infestation severity and severity change in a temperate mixed forest,” Remote Sensing of Environment, 269, 112847.
https://doi.org/10.1016/j.rse.2021.112847.
Metz, M., Andreo, V., and Neteler, M. (2017),
“A New Fully Gap-Free Time Series of Land Surface Temperature from MODIS LST Data,” Remote Sensing, 9, 1333.
https://doi.org/10.3390/rs9121333.
Parselia, E., Kontoes, C., Tsouni, A., Hadjichristodoulou, C., Kioutsioukis, I., Magiorkinis, G., and Stilianakis, N. I. (2019),
“Satellite Earth Observation Data in Epidemiological Modeling of Malaria, Dengue and West Nile Virus: A Scoping Review,” Remote Sensing, 11, 1862.
https://doi.org/10.3390/rs11161862.
Pearson, R. G., and Dawson, T. P. (2003),
“Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?” Global Ecology and Biogeography, 12, 361–371.
https://doi.org/10.1046/j.1466-822X.2003.00042.x.
Porcasi, X., Rotela, C. H., Introini, M. V., Frutos, N., Lanfri, S., Peralta, G., De Elia, E. A., Lanfri, M. A., and Scavuzzo, C. M. (2012),
“An operative dengue risk stratification system in Argentina based on geospatial technology,” Geospatial Health, 6, S31–S42.
https://doi.org/10.4081/gh.2012.120.
Rumiano, F., Wielgus, E., Miguel, E., Chamaillé-Jammes, S., Valls-Fox, H., Cornélis, D., Garine-Wichatitsky, M. D., Fritz, H., Caron, A., and Tran, A. (2020),
“Remote sensing of environmental drivers influencing the movement ecology of sympatric wild and domestic ungulates in semi-arid savannas, a review,” Remote Sensing, 12.
https://doi.org/10.3390/rs12193218.
Torresani, M., Rocchini, D., Alberti, A., Moudrý, V., Heym, M., Thouverai, E., Kacic, P., and Tomelleri, E. (2023),
“LiDAR GEDI derived tree canopy height heterogeneity reveals patterns of biodiversity in forest ecosystems,” Ecological Informatics, 102082.
https://doi.org/10.1016/j.ecoinf.2023.102082.
Viana, J., Santos, J. V., Neiva, R. M., Souza, J., Duarte, L., Teodoro, A. C., and Freitas, A. (2017),
“Remote Sensing in Human Health: A 10-Year Bibliometric Analysis,” Remote Sensing, 9, 1225.
https://doi.org/10.3390/rs9121225.
Wang, D., Shao, Q., and Yue, H. (2019),
“Surveying Wild Animals from Satellites, Manned Aircraft and Unmanned Aerial Systems (UASs): A Review,” Remote Sensing, 11, 1308.
https://doi.org/10.3390/rs11111308.